您好,欢迎来到暴趣科技网。
搜索
您的当前位置:首页星型模型、雪花模型、星座模型及数仓建模方法

星型模型、雪花模型、星座模型及数仓建模方法

来源:暴趣科技网

整体流程概览

(1)数据仓库(Data WareHouse,简称DW):

数据仓库是一种资讯系统的资料储存理论,主要功能乃是将组织透过资讯系统之联机交易处理(OLAP)经年累月所累积的大量资料,透过数据仓库理论所特有的资料储存架构,作一有系统的分析整理,以利各种分析方法,例如线上分析处理及数据挖掘之进行,并且进而支持例如决策支持系统及主管资讯系统之创建,帮助决策者能快速有效的自大量资料中,分析出有价值的资讯,以利决策拟定及快速回应外在环境变动,帮助建构商业智慧。

(2)数据模型:

数据模型是抽象描述现实世界的一种工具和方法,是通过抽象的实体及实体之间联系的形式,来表示现实世界中事务的相互关系的一种映射

有别于一般联机交易处理(OLTP)系统,数据模型设计是一个数据仓库设计的地基,当前两大主流理论分别为采用正规方式(normalized approach)或方式(dimensional approach)进行数据模型设计。 数据模型可以分为逻辑与实体数据模型。逻辑数据模型陈述业务相关数据的关系,基本上是一种与数据库无关的结构设计,通常均会采用正规方式设计。实体数据模型则与数据库管理系统有关,是建置在该系统上的数据架构,故设计时需考虑数据类型(data type)、空间及性能相关的议题。

整个数据仓库得建模过程中,我们需要经历一般四个过程:

业务建模,生成业务模型,主要解决业务层面的分解和程序化。

领域建模,生成领域模型,主要是对业务模型进行抽象处理,生成领域概念模型。

逻辑建模,生成逻辑模型,主要是将领域模型的概念实体以及实体之间的关系进行数据库层次的逻辑化。

物理建模,生成物理模型,主要解决,逻辑模型针对不同关系型数据库的物理化以及性能等一些具体的技术问题。

实现方式:

数据仓库是一个过程而不是一个项目。

数据仓库系统是一个信息提供平台,他从业务处理系统获得数据,主要以星型模型和雪花模型进行数据组织,并为用户提供各种手段从数据中获取信息和知识。

从功能结构划分,数据仓库系统至少应该包含数据获取(Data Acquisition)、数据存储(Data Storage)、数据访问(Data Access)三个关键部分。

(3)元数据

描述数据仓库内数据的结构和建立方法的数据。可将其按用途的不同分为两类,技术元数据和商业元数据。

技术元数据:

是数据仓库的设计和管理人员用于开发和日常管理数据仓库使用的数据。包括:数据源信息;数据转换的描述;数据仓库内对象和数据结构的定义;数据清理和数据更新时用的规则;源数据到目的数据的映射;用户访问权限,数据备份历史记录,数据导入历史记录,信息发布历史记录等。

商业元数据:

从商业业务的角度描述了数据仓库中的数据。包括:业务主题的描述,包含的数据、查询、报表;

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- baoquwan.com 版权所有 湘ICP备2024080961号-7

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务