您好,欢迎来到暴趣科技网。
搜索
您的当前位置:首页QIAGEN试剂盒提取RNA说明书中文翻译

QIAGEN试剂盒提取RNA说明书中文翻译

来源:暴趣科技网


1:细菌的溶菌酶破碎

2:细菌的溶菌酶破碎和机械破碎

3:细菌的机械破碎

4:细菌的溶菌酶裂解和蛋白酶K的消化

5:细菌的溶菌酶裂解、蛋白酶K的消化及机械破碎

6:固体培养基细菌的裂解

7:使用RNeasy Mini Kit从细菌溶解物中提纯总RNA。

8:使用RNeasy Midi Kit从细菌溶解物中提纯总RNA。

章节说明

该手册含有两种不同类型方案。我们提供了多种方案,其中方案1-6是针对制备细菌溶解物,方案7-8是针对如何从细菌溶解物中提取全RNA。你需要在方案1-6中选择一种操作,而后在方案7-8中任选其一。

制备细菌溶解物的各个方案都介绍了破碎细菌时如何固定RNA。如何选择不同的实验方案由细菌细胞壁的稳定性所决定。细菌细胞壁的稳定性受多个因素影响,包括细菌种类、生长阶段和培养基的成分。细菌必须完全破碎以确保RNA的有效提取。

制备细菌溶解物的各个方案都包含了不止一步。

■酶消化:细菌细胞壁可以被溶菌酶进行消化(例如溶菌酶、溶葡球菌酶)。我们认为溶菌酶的作用对于所有的革兰氏阳性、阴性细菌均是有效的。

■蛋白酶K消化:在复杂培养基上生长的细菌大部分蛋白质可以被蛋白酶K消化以提高RNA的纯化率。我们认为蛋白酶K对于可在复合培养基中生长的细菌均是有效的。蛋白酶K常常用于提高革兰氏阳性细菌RNA。另外,若从大量原材料中提取RNA,蛋白酶K可以有效提高RNA产率。

■机械破碎:细菌细胞壁的机械破碎可以使用组织研磨机和玻璃微珠。机械破碎法对于绝大多数的细菌来说都是适用的。机械破碎法与酶消化法相结合可以极大程度的提高RNA产率。尽管本手册中的机械破碎方案均为使用组织研磨机,但采用其他的破碎方法是完全可行的。

考虑到细菌种类的多样性以及培养条件的多样性,细菌溶解物的制备方案(方案1-6)必须谨慎选择。在第10页中介绍了制备细菌溶解物的不同方案,第11页(表格一)则提供了这些方案概况以便于参考选择。

方案一:细菌的酶消化

该方案仅涉及到酶消化。我们建议该方案适用对象为生长在基本培养基的为短世代的革兰氏阳性细菌

方案二:细菌的酶消化以及机械破碎

该方案涉及到在机械破碎过程中使用酶进行消化。我们建议该方案的使用对象为生长在基本培养基上的革兰氏阴性细菌和易于破碎的革兰氏阳性细菌。

方案三:细菌的机械破碎

该方案仅涉及到机械破碎,广泛适用各类细菌,但是使用该方案相比于其他方案会取得更低的RNA产率。

方案四:细菌的酶消化和蛋白酶K处理

该方案主要是溶菌酶与蛋白酶K的共消化。我们建议该方案适用于生长在复杂培养基的革兰氏阴性细菌和生长在基本或复杂培养基上的革兰氏阳性细菌。

方案五:细菌的酶消化、蛋白酶K消化和机械破碎

该方案主要是在机械破碎过程中使用酶消化、蛋白酶K消化共处理。我们建议该方案适用于生长在基本或者复杂培养基上的难以破碎的革兰氏阳性细菌。

方案六:固体培养基细菌的破碎

该方案适合生长在固体培养基上的细菌。细菌细胞可以通过溶菌酶的消化并同时加入蛋白酶K或者使用机械破碎。

方案七:使用RNeasy Mini Kit从细菌溶解物中提取全RNA

该方案就使用RNeasy Mini Kit从每份样品中提出最高100µg的RNA。该方案所需

使用的细菌溶解物可以通过方案1-6中的其中一个进行制备。

方案八:使用RNeasy Midi Kit从细菌溶解物中提取全RNA

该方案就使用RNeasy Midi Kit从每份样品中提出最高1mg的RNA。方案所需使用的细菌溶解物可以通过方案1-6中的其中一个进行制备。

注意:对于某些种类的细菌或者培养条件而言,使用苯酚-异硫氰酸胍基础裂解缓冲液可以提升RNA的产率。该手册的附录部分含有描述通过与RNeasy Lipid Tissue Mini Kit(包括了苯酚-异硫氰酸胍基础裂解缓冲液)结合使用的RNAprotect Bacteria Reagent来固定并提取细菌RNA。附录C(第41页)是为大多种类细菌而制备的方案,介绍了溶菌酶和自行选择的蛋白酶K消化通过加热QIAzol反应液和RNA提取。附录D(第44页)是为某些特定革兰氏阳性细菌制备的方案,介绍了在加热的QIAzol反应液中的溶菌酶消

化、蛋白酶K消化、机械破碎,而后进行RNA提取。

实验人员需自备的仪器和试剂

因实验常接触化学药剂,请穿戴实验服、一次性手套和护目镜。更多信息,请查询MSDSs,可通过供货商购买。

方案须知

■灭菌的,无RNase头

■恰当型号的离心管和微型离心机或者适当转子的离心机

■一次性手套

■涡旋器

■震荡孵育箱

涉及酶解的方案(第十一页,表一)

■胞壁质酶或者合适的溶解酶

■配置TE缓冲液所需的Tris和EDTA

涉及蛋白酶K消化的方案(第十一页,表一)

■QIAGEN蛋白酶K

涉及机械破碎的方案(第十一页,表一)

■组织破碎器

■玻璃微珠

涉及RNeasy Kits的方案

■14.3M b-巯基乙醇

■RNeasy Mini Kit, RNeasy Midi Kit, RNeasy Protect Bacteria Mini Kit, 或者 RNeasy

Protect Bacteria Midi Kit

■乙醇(96–100%)、乙醇(80%)或者乙醇(70%)

■建议:RNase-Free DNase Set

重要事项

最佳的培养条件

为确保基因表达的准确性以及可重复性,以下几点需实验人员注意

■培养基:我们建议使用基本培养基,因为基本培养基成分更加明确,相比于复合培养基具有更少的可变因素。

■收集细胞的时间:细胞应当在对数中期进行收集。在这一阶段,培养条件处于稳定状态。细胞的营养也没有消耗,因为高度的新陈代谢活动使RNA也处于极高的水平。另外,当细菌细胞的生长达到稳定期,细胞壁将变得难以渗透进去,这回在RNAprotect Bacteria Reagent固定RNA的过程中降低渗透速率及效果。

RNA产率受到细菌细胞世代时间很大影响,我们因此建议使用新鲜培养基。

正确选择起始材料的使用量

我们使用RNeasy Kits从细菌溶解物中提取RNA,起始材料的使用量十分重要,需仔细计算。有两个因素需要考虑:

■RNeasy 离心柱的RNA结合力:RNeasy Mini spin column最高生产量为每份100µg,RNeasy Midi spin column为每份1 mg。

■RNAprotect Bacteria Reagent在细胞培养过程中的作用效果以及可以起到有效溶菌作用的RLT体积:每RNeasy Mini离心柱最多为7.5 x 108细胞数目,每份RNeasy Midi离心柱为5 x 108–7.5 x 109细胞数目。

细胞数目最大值是以在LB培养基中生长的大肠杆菌为参考。因为不同种类的细菌会表现出不同的形态特征,也可能因培养条件不同而产生区别,所以细胞最大数目常常是有所差别的。

These limiting factors are illustrated in the following 2 examples, which show the

calculation of the amount of E. coli to apply to an RNeasy Mini spin column:

相关的因素将在以下的两个例子中阐述,主要是介绍了使用大肠杆菌

E. coli grown in RNA yield approximately 40 µg per 7.5 x 108cells. Up to

minimal medium 7.5 x 108

cells can be used (use of higher numbers of cells

results in inefficient lysis and reduced yield).

E. coli grown in RNA yield approximately 120 µg per 7.5 x 108

cells. Up to

LB medium 6 x 108

cells can be used (100 µg RNA is the maximum binding

capacity of the RNeasy Mini spin column).

Table 2 shows the typical RNA yields from bacterial cells grown in different

culture

media.

Note: If the RNA binding capacity of the RNeasy spin column is exceeded, or if cell

lysis is incomplete due to the use of excess starting material, the yield and purity of the

purified RNA will be significantly reduced.

Bacterial species Culture medium†

No. cells RNA yield (µg)

E. coli Minimal medium 5 x 108

25

E. coli LB 5 x 108

70

B. subtilis Minimal medium 1 x 108

8

B. subtilis LB 1 x 108

15

Table 2. Typical Yields of Total RNA from Two Bacterial Species Grown in Different

Culture Media*

* Bacterial cells disrupted according to Protocol 1.

We recommend minimal media for growing bacteria.

Yields can vary due to factors such as generation time and growth conditions used. In addition, following

the protocols for mechanical disruption of cells (Protocols 2, 3, and 5) may increase yields. Since the

RNeasy procedure enriches for mRNA and other RNAs >200 nucleotides, the total RNA yield does not

include quantitative amounts of 5S RNA, tRNA, and other low-molecular-weight RNAs, which make up

15–20% of total cellular RNA.

If your starting material is neither E. coli nor B. subtilis and you do not know its RNA

content, we recommend using no more than 2 x 108

cells per RNeasy Mini spin

column or 2 x 109

cells per RNeasy Midi spin column in the first purification

procedure. Depending on RNA yield and purity, it may be possible to increase the

number of cells in subsequent procedures. To optimize RNA yields, we recommend

performing pilot experiments in which RNA is purified from different amounts

of cells.

Quantifying bacterial cells

Bacterial growth is usually measured using a spectrophotometer. However, it is very

difficult to give reliable recommendations for the relationship between OD values and

cell numbers in bacterial cultures. OD readings are influenced by factors such as

bacterial species and physiology, since OD readings measure light scattering rather

than absorption. Measurements of light scattering depend on the distance between the

sample and the detector, and readings from different types of spectrophotometer

therefore vary. Furthermore, different species show different OD values at certain

wavelengths (e.g., 600 nm or 436 nm). Bacterial physiology can be influenced

by

various factors (e.g., culture media, temperature, and shaker speed).

We therefore recommend calibrating your spectrophotometer by comparing OD

readings at appropriate wavelengths with viable cell densities determined by plating

experiments.* OD readings should be between 0.05 and 0.3 to ensure reliability.

Samples with OD readings above 0.3 should be diluted so that the OD readings fall

within this range; the dilution factors are used when calculating the number of cells

per ml.

The following calculation may be helpful as a rough guide. An E. coli culture of

1 x 109

cells/ml is diluted 1:4, and gives OD600 readings of 0.25 with a Beckman

DU®-7400 spectrophotometer or 0.125 with a Beckman DU-40 spectrophotometer.

These correspond to calculated OD readings of 1.0 or 0.5, respectively, for 1 x 109

cells/ml.

Handling and storing starting material

RNAprotect Bacteria Reagent is added to bacterial cultures to immediately stabilize

RNA. After RNA stabilization, bacterial cells can be pelleted by centrifugation. Pellets

can be frozen and stored at –20°C for up to 2 weeks, or at –70°C for up to 4 weeks.

DNase digestion

Generally, DNase digestion is not required when purifying RNA using RNeasy Kits,

since RNeasy silica-membrane technology enables efficient removal of most of the

DNA without DNase treatment. However, further DNA removal may be necessary for

certain RNA-based applications that are sensitive to very small amounts of DNA. In

these cases, residual amounts of DNA can be removed by on-column DNase digestion

during the RNA purification procedure using the QIAGEN RNase-Free DNase Set, or

by DNase digestion after RNA purification.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- baoquwan.com 版权所有 湘ICP备2024080961号-7

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务