浅谈“空间与图形”概念教学策略
浅谈“空间与图形”概念教学策略【内容摘要】:数学概念具有概括化和抽象化的特点,它们是数学学习或数学思维的细胞,是组成数学知识的基础,是学生理解教材的根本。如正方体、长方体、平行四边形、三角形等 空间与图形 概念的学习是小学数学概念教学中的一块重要内容,由于学生的认知特点以及这类概念自身的复杂性、抽象性等特点,学生学习此类概念有一定的困难。这就需要老师在平时的教学中有意识准备一些感性材料,来帮助学生建构概念、理解概念。建立概念的网络体系,实现概念的系统化和结构化。在进行 空间与图形 概念的巩固应用训练中,可以设计能够引导学生自主参与、能够有利于学习中的动态生成和能突出知识的本质特征的问题,层层深入,使学生进一步理解概念本质,达到 举一反三 的效果。
【关键词】:概念 教具 操作 变式 结构化 系统化 策略
小学数学教学三维目标之一是知识和技能的掌握,其中重要的一块内容是概念的学习,它们也是人类思维的基本形式。数学概念具有概括化和抽象化的特点,它们是数学学习或数学思维的细胞,是组成数学知识的基础,是学生理解教材的根本。如正方体、长方体、平行四边形、三角形等 空间与图形 概念的学习是小学数学概念教学中的一块重要内容,由于学生的认知特点以及这类概念自身的复杂性、抽象性等特点,学生学习此类概念有一定的困难。当前,在概念的教学中存在僵化教条地讲授概念、概念的本质揭示不透彻、忽视概念间的相互联系、忽视概念的综合应用发展等问题,导致学生要非常透彻地理解掌握概念存在一定的困难,往往只会死记硬背、照搬照抄,不会灵活应用。这就需要我们教师能够根据数学概念的特点、学生的认知特点,进行精心的设计和引导,必将有益于学生学习数学概念。下面结合教学实践,谈几点粗浅的看法。 一、提供感性材料,帮助学生建构概念
在学习 空间与图形 概念的过程中,学生要用各种感官去感知概念、去听取教师的言语说明,去阅读文字符号,去进行实际操作,从而了解概念的表征,有选择地把感知的概念的有关信息进行初步概括,形成表象。小学生的思维以直观形象思维为主,在理解概念的过程中,我们可以提供一些感性材料,借助各种教学
指导,即或学生在头脑中对事物性质的许多印象和记忆,帮助学生更好地理解概念。在提供感性材料帮助学生理解概念时,根据不同的概念,我们可以采取不同的教学策略。
(一)运用直观教具,帮助学生理解概念
小学生的思维以形象思维为主,如果能借助直观教具,将更容易理解概念的本质。例如《认识长/正方体》中,教师可以以长方体纸盒、正方体魔方、书本为实物,结合长方体和正方体的模型,让学生直观感知长方体与正方体的特征。并且等到了学生动手体验环节,教师还可以借助长方体模型演示,让学生观察长方体的面及面的特点;然后再由面引出棱,观察发现棱的特点后,又由棱引出顶点。学生跟着老师通过数一数、比一比、看一看等活动,从中明确长方体面、棱、点的个数及其各自特征。这样能增强感知效果,便于学生建立空间观念。 在选择教具时,教师要注意选择具有典型性的实物或者模型,它们要能明显地体现学习对象的本质,减少非本质属性的干扰。同时还要注意教具的大小及演示的高度,要做到让全班学生都看得到,看得清楚。此外,在概念形成时,不能只停留在直观感知的水平上,教师要及时引导学生进行抽象思维,运用语言来引导学生从教具中抽象出几何形体,从而发展学生的抽象思维能力。 (二)通过直观操作,促进学生理解概念
《数学课程标准》指出:动手操作、自主探索与合作交流是学生学习的重要方式。几何形体概念需要理解它的本质,只借助看、听、说等方法是不够的,在教学时,应当遵循学生的认知规律,结合实例,联系学生已有知识经验,采用直观操作等实践活动的形式,帮助学生理解概念。如教学 面积单位 时,有位教师首先提出这样一个问题: 你知道课桌面的面积有多大吗?用你身边的材料(书、作业本、文具盒等)比划比划你的课桌面究竟有多大。 学生操作后汇报结果,有的说有6本数学课本面那么大。,有的说有8本作业本面那么大 面对不一致的测量结果,教师顺势问道: 怎样才能的到相同的结果呢? 学生回答用同样大小的东西测量,此时教师自然而然的引出了 面积单位 。这位教师在让学生动手操作、交流讨论过程中,通过比较不同的结论体会到统一面积单位的必要性。在引发学生学习动机的同时,又让学生体验到了创造面积单位的过程,不仅知道 是什么 ,
还懂得了 为什么 。学生最能理解的是自己动手实践亲身感受过的东西,相当于一些老师喜欢用数格子的方法抽象的引入,这样做更符合大多数学生的知识基础和认知规律。
(三)加强变式,帮助学生理解概念本质
变式是指概念的肯定例证在无关特征方面的变化。变式用以说明同一个概念的本质特征相同、非本质特征不同的一组实例。这些实例都是概念的正例,但是它们在概念的非本质特征方面有变化。由于概念所指的对象除了具有相同的本质属性以外,还会在非本质属性方面有不同的表现,在几何形体概念的教学中,我们可以充分运用变式来帮助学生获得更精确、更稳定的概念。例如,学生在学习 互相垂直 的概念时,常常习惯于竖着理解,过直线外一线作垂线也习惯于向水平方向画。当变化了直线的方向、位置,就会受标准方向的定势影响,发生错误,以至后来在位置或形状有了变化的三角形(平行四边形、梯形)中找错、画错高,影响面积的正确计算,其原因就在于 互相垂直 这个概念的形成阶段未能为学生提供充分的变式材料,学生没能在 两条直线相交成直角 这一本质意义上对 互相垂直 实行抽象概括。其实,在学生开始学习 互相垂直 时,教师不仅要提供互相垂直的标准式,而且要提供互相垂直的各种变式的练习。在认识和画出三角形(平行四边形、梯形)的高时,不仅在标准图形中进行,而且要在变式图形中进行。然后引导学生分析、比较,找出它们的相同点和不同点,从而帮助学生从不同方面理解 三角形的高 ,明确 三角形的高 的本质特征。 二、构建概念的网络体系,实现概念的系统化和结构化。
我们在教学概念时,不应该孤立地教概念。在准备教学生一个新概念之前,要为学生提供一个可把这个概念置于其中的框架,如果孤立地学习概念,将会学习的水平。因而在教学中,教师应当采取一些恰当的方式了解学生,找到新旧知识之间、文本知识和生活之间的联结点展开教学,让学生以联系的观点学习新的概念,促进主动建构,形成概念的网络体系。